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#include <fentl.h>
/* process A */
mainQ
{
int fd;
char buil512];
fd = open(“/etc/passwd”, O_RDONLY);
read (fd, buf, sizeof(buf)); /* readl */
read(fd, buf, sizeof (buf)); /* read2 */
)

/* process B */
main(
{
int fd, i;
char bufl512];
for i = 0; i < sizeof(buf); i++)
bufli] = ’a’;
fd = open(“/etc/passwd”, O_WRONLY);
write(fd, buf, sizeof (buf)); /* writel */
write(fd, buf, sizeof (buf)); /* write2 */

Figure 5.8. A Reader .and a Writer Process

guarantee file consistency while it has a file open.

Finally, the program in Figure 5.9 shows how a process can open a file more
than once ana read it via different file descriptors. The kernel manipulates the file
table offsets associated with the two file descriptors independently, and hence, the
arrays bufl and buf2 should be identical when the process completes, assuming no
other process writes *“/etc/passwd” in the meantime.

5.3 WRITE'
The syntax for the write system call is
number = write(fd, buffer, count);

where the nmfeaning of the variables fd, buffer, count, and number are the same as
they are for the read system call. The algorithm for writing a regular file is similar
. to that for reading a regular file. However, if the file does not contain a block that,
.‘corresponds’to the byte offset to be written, the kernel allocates a new blogk using
algorithm alloc and assigns the block number to the correct position in the inode’s
table of contents. If the byte offset is that of an indirect block, the kernel may
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#include <fentlh>
main()
{
int fd1, fd2;
char buf1[512], ouf2[512];

fd1 = open(*“/etc/passwd”, O_RDONLY);
fd2 = open(‘“/etc/passwd”, O_RDONLY);
read(fd1, bufl, sizeof (bufl));
read(fd2, buf2, sizeof (buf2));

}

Figure 5.9. Reading a File via Two File Descriptors

have to allocate several blocks for use as indirect blocks and data blocks. The
inode is locked for the duration of the write, because the kernel may change the
inode when allocating new blocks; allowing other processes access to the file could
corrupt the inode if several processes allocate blocks simultaneously for the same
byte offsets. When the write is complete, the kernel updates the file size entry in
the inode if the file has grown larger.

For example, suppose a process writes byte number 10,240 to a file, the
highest-numbered byte yet written to the file. When accessing the byte in the filé
using algorithm bmap, the kernel will find not only that the file does not contain a
block for that byte but also that it does not contain the necessary indirect block. It
assigns a disk block for the indirect block and writes the block number in the in-
core inode. Then it assigns a disk block for the data block and writes its block
number into the first position in the newly assiened indirect block.

The kernel goes through an internal loop. as in the read algorithm, writing one
block to disk during each iteration. During each iteration, it determines whether it
will write the entire block or‘only part of it. If it writes only part of a block, it
must first read the block from disk so as not,to overwrite the parts that will remain
the same, but if it writes the whole block, it need not read the block, since it will
overwrite its previous contents anyway. .The write proceeds block by block, but the
kernel uses a delayed write (Section 3.4) to write the data to disk, caching it in
case another process should read or write it soon and avoiding extra disk operations.
Delayed write is probably most effective for pipes, because another process is
reading the pipe and removing its data (Section 5.12). But even for regular files,
delayed write is effective if the file is created temporarily and will be read soon.
For example, many programs, such as -editors and mail, create temporary files in
the directory “/tmp” and quickly remove them. Use of delayed write can reduce
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the number of disk writes for temporary files.

5.4 FILE AND RECORD LOCKING

The original UNIX system developed by Thompson and Ritchie did not have an
internal mechargl‘sm by which a process could insure exclusive access to a file. A
locking mechanism was considered unnecessary because, as Ritchie notes, “we are
not faced with large, single-file databases maintained by independent processes”
(see [Ritchie 81]). To make the UNIX system more attractive to commercial users
with database applications, System V now contains file and record locking
mechanisms. File locking is the capability to prevent other processes from reading
or writing any part of an entire file, and record locking is the capability to prevent
other processes from reading or writing particular records (parts of a file between
particular byte offsets). Exercise 5.9 explores the implementation of file and record
locking.

5.5 ADJUSTING THE POSITION OF FILE 1/0 — LSEEK

The ordinary use of read and write system calls provides sequential access to a file,
but processes can use the Iseek system call to position the 1/0 and allow random
access to a file. The syntax for the system call is

position = Iseek(fd, offset, reference);

where fd is the file descriptor identifying the file, offset is a byte oﬂ'set and
reference indicates whether offset should be considered from the beginning of the
file, from the current position of the ‘read/write offset, or from the end of the file.
The return value, position, is the byte offset where the next read or write will start.
In the program in Figure 5.10, for example, a process opens a file, reads a byte,
then invokes Iseek to advance the file table offset value by 1023 (with reference 1),
and loops. Thus, the program reads every 1024th byte of the file. If the value of
reference is 0, the kernel seeks from the beginning of the file, and if its value is 2,
the kernel seeks beyond the end of the file. The Iseek system call has nothing to do
with the seek operation that positions a disk arm over a particular disk sector. To
implement Iseek, the kernel simply adjusts the offset value in the file table;
subsequent read or write system calls use the file table offset as their starting byte
offset.

5.6 CLOSE

A process closes an open file when it no longer wants to access it. The syntax for
the close system call is
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#include <fentl.h>
main(argc, argv)

int argc;

char *argv(};

int fd, skval,
char c;

if (arge != 2)
exitQ;
fd = open(argv[1], O_RDONLY);
if (fd == —1)
exitQ;
while ((skval = read(fd, &c, 1)) == 1)
{
printf(“char %c\n”, c);
skval = Iseek(fd, 1023L, 1);
printf(“new seek val %d\n”, skval);

}

Figure 5.10. Program with Lseek System Call

close(fd);

where fd is the file descriptor for the open file. The kernel does the close operation
by manipulating the file descriptor and the corresponding file table and inode table
entries. If the reference count of the file table entry is greater than 1 because of
dup or fork calls, then other user file descriptors reference the file table entry, as
will be seen; the kernel decrements the count and the close completes. If the file
table reference count is 1, the kernel frees the entry and releases the in-core inode
originally allocated in the open system call (algorithm iput). If other processes still
reference the inode, the kernel decrements the inode reference count but leaves it
allocated; otherwise, the inode is free for reallocation because its reference count is
0. When the close system call completes, the user file descriptor table entry is
empty. Attempts by the process to use that file descriptor result in an error until
the file descriptor is reassigned as a result of another system call. When a process
exits, the kernel examines its active user file descriptors and internally closes each
one. Hence, no process can keep a file open after it terminates.

For example, Figure 5.11 shows the relevant table entries of Figure 5.4, after
the second process closes its files. The entries for file descriptors 3 and 4 in the
user file descriptor table are empty. The count fields of the file table entries are
now O, and the entries are empty. The inode reference count for the files
“/etc/passwd” and “private” are also decremented. The inode entry for “private”
is on the free list because its reference count is 0, but its entry is not empty. If
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another process accesses the file “private” while the inode is still on the free list,
the kernel will reclaim the inode, as explained in Section 4.1.2.

5.7 FILE CREATION

The open system call gives a process access to an existing file, but the creat system
call creates a new file in the system. The syntax for the creat system call is

fd = creat(pathname, modes);
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where the variables pathname, modes, and fd mean the same as they do in the
open system call. If no such file previously existed, the kernel creates a new file
with the specified name and permission modes; if the file already existed, the kernel
truncates the file (releases all existing data blocks and sets the file size to 0) subject
to suitable file access permissions.’ Figure 5.12 shows the algorithm for file
creation.

algorithm creat
input: file name
permission settings
output: file descriptor
{
get inode for file name (algorithm namei);
if (file already exists)

if (not permitted access)

release inode (algorithm iput);
return(error);

}
else /* file does not exist yet */
{
assign free inode from file system (algorithm ialloc);
create new directory entry in parent directory: include
new file name and newly assigned inode number;
}
allocate file table entry for inode, initialize count;
if (file did exist at time of create)
free all file blocks (algorithm free);
unlock (inode);
return(user file descriptor);

Figure 5.12. Algorithm for Creating a File

The kernel parses the path name using algorithm namei, following the
algorithm literally while parsing directory names. However, when it arrives at the
last component of the path name, namely, the file name that it will create, namei

3. The open system call specifies two flags, O_CREAT (create) and O_TRUNC (truncate): If a process
specifies the O_CREAT flag on an open and the file does not exist, the kernel will create the file. If
the file already exists, it will not be truncated unless the O_TRUNC flag is also set.
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notes the byte offset of the first empty directory slot in the directory and saves the
offset in the u area. If the kernel does not find the path name component in the
directory, it will eventually write the name into the empty slot just found. If the
directory has no empty slots, the kernel remembers the offset of the end of the
directory and creates a new slot there. It also remembers the inode of the directory
being searched in its u area and keeps the inode locked; the directory will become
the parent directory of the new file. The kernel does not write the new file name
into the directory yet, so that it has less to undo in event of later errors. It checks
that the directory allows the process write permission: Because a process will write
the directory as a result of the creat call, write permission for a directory means
that processes are allowed to create files in the directory.

Assuming no file by the given name previously existed, the kernel assigns an
inode for the new file, using algorithm ialloc (Section 4.6). It then writes the new
file name component and the inode number of the newly allocated inode in the
parent directory, at the byte offset saved in the u area. Afterwards, it releases the
inode of the parent directory, having held it from the time it searched the directory
for the file name. The parent directory now contains the name of the new file and
its inode number. The kernel writes the newly allocated inode to disk (algorithm
bwrite) before it writes the directory with the new name to disk. If the system
crashes between the write operations for the inode and the directory, there will be
an allocated inode that is not referenced by any path name in the system but the
system will function normally. If, on the other hand, the directory were written
before the newly allocated inode and the system crashed in the middle, the file
system would contain a path name that referred to a bad inode. (See Section
5.16.1 for more detail.)

If the given file already existed before the creat, the kernel finds its inode while
searching for the file name. The old file must allow write permission for a process
to create a “new” file by the same name, because the kernel changes the file
contents during the creat call: It truncates the file, fresing all its data blocks using
algorithm free, so that the file looks like a newly created file. However, the owner
and permission modes of the file are the same as they were for the original file:
The kernel does not reassign ownership to the owner of the process, and it ignores
the permission modes specified by the process. Finally, the kernel does not check
that the parent directory of the existing file allows write permission, because it will
not change the directory contents.

The creat system call proceeds according to the same algorithm as the open
system call. The kernel allocates an entry in the file table for the created file so
that the process can write the file, allocates an entry in the user file descriptor
table, and eventually returns the index to the latter entry as the user file descriptor.

5.8 CREATION OF SPECIAL FILES

The system call mknod creates special files in the system, including named pipes, -
device files, and directories. It is similar to creat in that the kernel allocates an
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inode for the file. The syntax of the mknod system call is
mknod (pathname, type and permissions, dev)

where pathname is the name of the node to be created, type and permissions give
the node type (directory, for example) and access permissions for the new file to be
created, and dev specifies the major and minor device numbers for block and
character special files (Chapter 10). Figure 5.13 depicts the algorithm mknod for
making a new node.

algorithm make new node
inputs: node (file name)

file type

permissions

major, minor device number (for block, character special files)
output: none

if (new node not named pipe and user not super user)
return(error);

get inode of parent of new node (algorithm namei);

i{f (new node already exists)
release parent inode (algorithm iput);
return(error);

assign free inode from file system for new node (algorithm ialloc);
create new directory entry in parent directory: include new node
name and newly assigned inode number;
release parent directory inode (algorithm iput);
if (new node is block or character special file)
write major, minor numbers into inode structure:;
release new node inode (algorithm iput);

Figure 5.13. Algorithm for Making New Node

The kernel searches the file system for the file name it is about to create. If the
file does not yet exist, the kernel assigns a new inode on the disk and writes the new
file name and inode number into the parent directory. It sets the file type field in
the inode to indicate that the file type is a pipe, directory or special file. Finally, if
the file is a character special or block special device file, it writes the major and
minor device numbers into the inode. If the mknod call is creating a directory
node, the node will exist after the system call completes but its contents will be in
the wrong format (there are no directory entries for “.* and “.”). Exercise 5.33
considers the other steps needed to put a directory into the correct format.
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algorithm change directory
input: new directory name
output: none
{
get inode for new directory name (algorithm namei);
if (inode not that of directory or process not permitted access to file)
(
release inode (algorithm iput);
return(error);
)
unlock inode;
release "old" current directory inode (algorithm iput);
place new inode into current directory slot in u area;

Figure 5.14. Algorithm for Changing Current Directory

5.9 CHANGE DIRECTORY AND CHANGE ROOT

When the system is first booted, process O makes the file system root its current
directory during initialization. It executes the algorithm iget on the root inode,
saves it in the u area as its current directory, and releases the inode lock. When a
new process is created via the fork system call, the new process inherits the current
directory of the old process in its # area, and the kernel increments the inode
reference count accordingly.

The algorithm chdir (Figure 5.14) changes the current directory of a process.
The syntax for the chdir system call is

chdir(pathname);

where pathname is the directory that becomes the new current directory of the
process. The kernel parses the name of the target directory using algorithm namei
and checks that the target file is a directory and that the process owner has access
permission to the directory. It releases the lock to the new inode but keeps the
inode allocated and its reference count incremented, releases the inode of the old
current directory (algorithm iput) stored in the u area, and stores the new inode in
the u area. After a process changes its current directory, algorithm namei uses the
inode for the start directory to search for all path names that do not begin from
root. After execution of the chdir system call, the inode reference count of the new
directory is at least one, and the inode reference count of the previous current
directory may be 0. In this respect, chdir is similar to the open system call,
because both system calls access a file and leave its inode allocated. The inode
allocated during the chdir system call is released only when the process executes
another chdir call or when it exits.
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A process usually uses the global file system root for all path names starting
with “/”. The kernel contains a global variable that points to the inode of the
global root, allocated by iget when the system is booted. Processes can change their
notion of the file system root via the chroot system call. This is useful if a user
wants to simulate the usual file system hierarchy and run processes there. Its
syntax is

chroot(pathname);

where pathname is the directory that the kernel subsequently treats as the process’s
root directory. When executing the chroot system call, the kernel follows the same
algorithm as for changing the current directory. It stores the new root inode in the
process u area, unlocking the inode on completion of the system call. However,
since the default root for the kernel is stored in a global variable, it does not release
the inode of the old root .automatically, but only if it or an ancestor process had
executed the chroot system'call. The new inode is now the logical root of the file
system for the process (and all its children), meaning that all path name searches
in algorithm namei that start from root (“/”) start from this inode, and that all
attempts to use “..” over the root will leave the working directory of the process in
the new root. A process bestows new child processes with its changed root, just as
it bestows them with its current directory.

$.10 CHANGE OWNER AND CHANGE MODE

Changing the owner or mode (access permissions) of a file are operations on the
inode, not on the file per se. The syntax of the calls is

chown(pathname, owner, group)
chmod (pathname, mode)

To change the owner of a file, the kernel converts the file name to an inode using
algorithm namei. The process owner must be superuser or match that of the file
owner (a process cannot give away something that does not belong to it). The
kernel then assigns the new owner and group to the file, clears the set user and set
group flags (see Section 7.5), and releases the inode via algorithm iput. After the
change of ownership, the old owner loses “owner” access rights to the file. To
change the mode of a file, the kernel follows a similar procedure, changing the
mode flags in the inode instead of the owner numbers.

5.11 STAT AND FSTAT

The system calls stat and fstat allow processes to query the status of files, returning
information such as the file type, file owner, access permissions, file size, number of
links, inode number, and file access times. The syntax for the system calls is
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stat(pathname, statbuffer);
fstat(fd, statbuffer);

where pathname is a file name, fd is a file descriptor returned by a previous open
call, and statbuffer is the address of a data structure in the user process that will
contain the status information of the file on completion of the call. The system
calls simply write the fields of the inode into statbuffer. The program in Figure
5.33 will illustrate the use of stat and fstat.

Callis pipe Cannot share pipe

Proc B Proc C

o~

Proc D : Proc E

S har.e'.pipe

Figure 5.15. Process Tree and Sharing Pipes

5.12 PIPES

Pipes allow transfer of data between processes in a first-in-first-out manner (FIFO),
and they also allow synchronization of process execution. Their implementation
allows processes to communicate even though they do not know what processes are
on the other end of the pipe. The traditional implementation of pipes uses the file
system for data storage. There are two kinds of pipes: named pipes and, for lack
of a better term, unnamed pipes, which are identical except for the way that a
process initially accesses them. Processes use the open system call for named pipes,
but the pipe system call to create an unnamed pipe. Afterwards, processes use the
regular system calls for files, such as read, write, and close when manipulating
pipes. Only related processes, descendants of a process that issued the pipe call,
can share access to unnamed pipes. In Figure 5.15 for example, if process B
creates a pipe and then spawns processes D and E, the three processes share access
to the pipe, but processes A and C do not. However, all processes can access a
named pipe regardless of their relationship, subject to the usual file permuissions.
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Because unnamed pipes are more common, they will be presented first.

5.12.1 The Pipe System Call
The syntax for creation of a pipe is
pipe(fdptr);

where fdptr is the pointer to an integer array that will contain the two file
descriptors for reading and writing the pipe. Because the kernel implements pipes
in the file system and because a pipe does not exist before its use, the kernel must
assign an inode for it on creation. It also allocates a pair of user file descriptors
and corresponding file table entries for the pipe: one file déscriptor for reading
from the pipe and the other for writing to the pipe. It uses the file table so that the
interface for the read, write and other system calls is consistent with the interface
for regular files. As a result, processes do not have to know whether they are
reading or writing a regular file or a pipe.

algorithm pipe

input: none

-output: read file descriptor
write file descriptor

{

assign new inode from pipe device (algorithm ialloc):

allocate file table entry for reading, another for writing;

initialize file table entries to point to new inode;

allocate user file descriptor for reading, another for writing,
initialize to point to respective file table entries;

set inode reference count to 2;

initialize count of inode readers, writers to 1;

Figure 5.16. Algorithm for Creation of (Unnamed) Pipes

Figure 5.16 shows the algorithm for creating unnamed pipes. The kernel
assigns an inode for a pipe from a file system designated the pipe device using
algorithm ialloc. A pipe device is just a file system from which the kernel can
assign inodes and data blocks for pipes. System administrators specify a pipe
device during system configuration, and it may be identical to another file system.
While a pipe is active, the kernel cannot reassign the pipe inode and data blocks to
another file.

The kernel then allocates two file table entries for the read and write
descriptors, respectively, and updates the bookkeeping information in the in-core
inode. Each file table entry records how many instances of the pipe are open for
reading or writing, initially 1 for each file table entry, and the inode reference



5.12 PIPES 113.

count indicates how many times the pipe was “opened,” initially two — one for
cach file table entry. Finally, the inode records byte offsets in the pipe where the
next read or write of the pipe will start. Maintaining the byte offsets in the inode
allows convenient FIFO access to the pipe data and differs from regular files where
the offset is maintained in the file table. Processes cannot adjust them via the /seek
system call and so random access 1/0 to a pipe is not possible.

$.12.2 Opening 2 Named Pipe

A named pipe is a file whose semantics are the same as those of an unnamed pipe,
except that it has a directory entry and is accessed by a path name. Processes open
named pipes in the same way that they open regular files and, hence, processes that
are not closely related can communicate. Named pipes permanently exist in the file
system hierarchy (subject to their removal by the unlink system call), but unnamed
pipes are transient: When all processes finish using the pipe, the kernel reclaims’its
inode.

The algorithm for opening a named pipe is identical to the algorithm for
opening a regular file. However, before completing the system call, the kgrnel
increments the read or write counts in the inode, indicating the number of processes
that have the named pipe open for reading or writing. A process that opens the
named pipe for reading will sleep until another process opens the named pipe fof
writing, and vice versa. It makes no sense for a pipe to be open for reading if there
is no hope for it to receive data; the same is true for writing. Depending on
whether the process opens the named pipe for reading or writing, the kernel
awakens other processes that were asleep, waiting for a writer or reader process
(respectively) on the named pipe.

If a process opens a named pipe for reading and a writing process exists, the
open call completes. Or if a process opens a named pipe with the no delay option,
the open returns immediately, even if there are no writing processes. But if neither
condition is true. the process sleeps until a writer process opens the pipe. Similar
rules hold for a process that opens a pipe for writing.

5.12.3 Resding and Writing Pipes

A pipe should be viewed as if processes write into one end of the pipe and read
from the other end. As mentioned above, processes access data from a pipe in
FIFO manner, meaning that the order that data is written into a pipe is the order
that it is read from the pipe. The number of processes reading from a pipe do not
necessarily equal the numhber of processes writing the pipe; if the number of readers
or writers is greater than 1, they must coordinate use of the pipe with other
mechanisms. The kernel accesses the data for a pipe exactly as it accesses data for
a regular file: It stores data on the pipe device and assigns blocks to the pipe as
needed during write calls. The difference between storage allocation for a pipe and
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Figure 5.17. Logical View of Reading and Writing a Pipe

a regular file is that a pipe uses only the direct blocks of the inode for greater
efficiency, although this places a limit on how much data a pipe can hold at a time.
The kernel manipulates the direct blocks* of the inode as a circylar queue,
maintaining read and write pointers internally to preserve the FIFO order (Figure
5.17).

Consider four cases for reading and writing pipes: writing a pipe that has room
for the data being written, reading from a pipe that contains enough data to satisfy
the read, reading from a pipe that does not contain enough data to satisfy the
read, and finally, writing a pipe that does not have room for the data being written.

* Consider first the case that a process is writing a pipe and assume that the pipe
has room for the data being written: The sum of the number of bytes being written
and the number of bytes already in the pipe is less than or equal to the pipe’s
capacity. The kernel follows the algorithm for writing a regular file, except that it
increments the pipe size automatically after every write, since by definition the
amount of data in the pipe grows with every write. This differs from the growth of
a regular file where the process increments the file size only when it writes data
beyond the current end of file. If the next byte offset in the pipe were to require
use of an indirect block, the kernel adjusts the file offset value in the u area to
point to the beginning of the pipe (byte offset 0). The kernel never overwrites data
in the pipe; it can reset the byte offset to O because it has already determined that
the data will not overflow the pipe’s capacity. When the writer process has written
all its data into the pipe, the kernel updates the pipe’s (inode) write pointer so that
the next process to write the pipe will proceed from where the last write stopped.
The kernel then awakens all other processes that fell asleep waiting to read data
from the pipe.

When a process reads a pipe, it checks if the pipe is empty or not. If the pipe
contains data, the kernel reads the data from the pipe as if the pipe were a regular
file, following the regular algorithm for read. However, its initial offset is the pipe
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read pointer stored in the inode, indicating the extent of the previous read. After
reading each block, the kernel decrements the size of the pipe according to the
number of bytes it read, and it adjusts the u area offset value to wrap around to the.
beginning of the pipe, if necessary. When the read system call completes, the
kernel awakens all sleeping writer processes and saves the current read offset in the
inode (not in the file table entry). ,

If a process attempts to read more data than is in the pipe, the read will
complete successfully after returning all data currently in the pipe, even though it
does not satisfy the user count. If the pipe is empty, the process will typically sleep
until another process writes data into the pipe, at which time all sleeping processes
that were waiting for data wake up and race to read the pipe. If, however, a
process opens a named pipe with the no delay option, it will return immediately
from a read if the pipe contains no data. The semantics of reading and writing
pipes are similar to the semantics of reading and writing terminal devices (Chapter
10), allowing programs to ignore the type of file they are dealing with.

If a process writes a pipe and the pipe cannot hold all the data, the kernel
marks the inode afnd goes to sleep waiting for data to drain from the pipe. When
another process subsequently reads from the pipe, the kernel will notice that
processes are asleep waiting for data to drain from the pipe, and it will awaken
them, as explained above. The exception to this statement is when a process writes
an amount of data greater than the pipe capacity (that is, the amount of data that
can be stored in the inode direct blocks); here, the kernel writes as much data as
possible to the pipe and puts the process to sleep until more room becomes
available. Thus, it is possible that written data will not be contiguous in the pipe if
other processes write their data to the pipe before this process resumes its write.

Analyzing the implementation of pipes, the process interface is consistent with
that of regular files, but the implementation differs because the kernel stores the
read and write offsets in the inode instead of in the file table. The kernel must
store the offsets in the inode for named pipes so that processes can share their
values: They cannot share values stored in file table entries because a process gets
a new file table entry for each open call. However, the sharing of read and write
offsets in the inode predates the implementation of named pipes. Processes with
access to unnamed pipes share access to the pipe through common file table entries,
so they could conceivably store the read and write offsets in the file table entry, as
is done for regular files. This was not done, because the low-level routines in the
kernel no longer have access to the file table entry: The code is simpler because the
processes share offsets stored in the inode.

5.12.4 Closing Pipes

When closing a pipe, a process follows the same procedure it would follow for
closing a regular file, except that the kernel does special processing before releasing
the pipe’s inode. The kernel decrements the number of pipe readers or writers,
-according to the type of the file descriptor. If the count of writer processes drops to
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0 and there are processes asleep waiting to read data from the pipe, the kernel
awakens them, and they return from taeir read calls without reading any data. If
the count of reader processes drops to 0 and there are processes asleep waiting to
write data to the pipe, the kernel awakens them and sends them a signal (Chapter
7) to indicate an error condition. In both cases, it makes no sense to allow the
processes to continue sleeping when there is no hope that the state of the pipe will
ever change. For example, if a process is waiting to read an unnamed pipe and
there are no more writer processes, there will never be a writer process. Although
it is possible to get new reader or writer processes for named pipes, the kernel
treats them consistently with unnamed pipes. If no reader or writer processes
access the pipe, the kernel frees all its data blocks and adjusts the inode to indicate
that the pipe is empty. When it releases the inode of an ordinary pipe, it frees the
disk copy for reassignment.

char string[] = “hello”;

main(

{
char bufl1024};
char *cpl, *cp2;
int fds[2];

cpl = string;
cp2 = buf;
while (*cpl)

*cp2++ = *cpl++;
pipe(fds);
for ()
{

write(fds[1], buf, 6);
read(fds[0], buf, 6);
. } \

)

Figure 5.18. Reading and Writing a Pipe

5.12.5 Examples

The program in Figure 5.18 illustrates an artificial use of pipes. The process
creates a pipe and goes into an infinite loop, writing the string “hello” to the pipe
and reading it from the pipe. The kernel does not know nor does it care that the
process that writes the pipe is the same process that reads the pipe.

A process executing the program in Figure 5.19 creates a named pipe node
called “fifo”. If invoked with a second (dummy) argument, it continually writes

/
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#include <fentl.h>
char string(] = “hello”;
main(argc, argv)

int arggc;

char *argvl];

int fd;
char bufl256];

/* create named pipe with read/write permission for all users */
mknod (“fifo”, 010777, 0);
if (argc == 2)
fd = open(“fifo”, O_WRONLY);
else
fd = open(“fifo’, O_RDONLY);
for (;})
if (argc == 2)
write(fd, string, 6);
else
read(fd, buf, 6);

Figure 5.19. Reading and Writing a Named Pipe

the string “hello” into the pipe; if invoked without a second argument, it reads the
named pipe. The two processes are invocations of the identical program and have
secretly agreed to communicate through the named pipe “fifo”, but they need not
be related. Other users could execute the program and participate in (or interfere
with) the conversation.

513 DUP|

The dup system call copies a file descriptor into the first free slot of the user file-
descriptor table, returning the new file descriptor to the user. It works for all file.
types. The syntax of the system call is

newfd = dup(fd);

where fd is the file descriptor being duped and newfd is the new file descriptor that
references the file. Because dup duplicates the file descriptor, it increments the
count of the corresponding file table entry, which now has one more file descriptor
entry that points to it. For example, examination of the data structures depicted in
Figure 5.20 indicates that the process did the following sequence of system calls: ' It
opened the file “/etc/passwd” (file descriptor 3), then opened the file “local” (file
descriptor 4), opened the file “/etc/passwd” again (file descriptor 5).. and finally,
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Figure 5.20. Data Structures after Dup

duped file descriptor 3, returning file descriptor 6.

Dup is perhaps an inelegant sy:tem call, because it assumes that the user knows
that the system will return the lowest-numbered free entry in the user file
descriptor table. However, if serves an important purpose in building sophisticated
programs from simpler, building-block programs, as exemplified in the construction
of shell pipelines (Chapter 7). .

Consider the program in Figure 5.21. The variable i contains the file descriptor
that the system returns as a result of opeding the file “etc/passwd,” and the
variable j contains the file descriptor that the system returns as a result of duping
the file descriptor i. In the u area of the process, the two user file descriptor
entries represented by the user variables i and j point to one file table entry and
therefore use the same file offset. The first two reads in the process thus read the
data in sequence, and the two buffers, buf! and buf2, do not contain the same data.
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#include <fentl.h>
main()
{
int i, j;
char buf1[512], buf2[512];

i = open(*‘/etc/passwd”, O_RDONLY);
j = dup(@); -

read (i, bufl, sizeof (buf1));

read (j, buf2, sizeof(buf2));

close();

read(j, buf2, sizeof(buf2));

}

Figure 5.21. C Program Illustrating Dup

This differs from the case where a process opens the same file twice and reads the
same data twice (Section 5.2). A process can close either file descriptor if it wants,
but I/O continues normally on the other file descriptor, as illustrated in the
example. In particular, a process can close its standard output file descriptor (file
descriptor 1), dup another file descriptor so that it becomes file descriptor 1, then
treat the file as its standard output. Chapter 7 presents a more realistic example of
the use of pipe and dup when it describes the implementation of the shell.

5.14 MOUNTING AND UNMOUNTING FILE SYSTEMS

A physical disk unit consists of several logical sections, partitioned by the disk
driver, and each section has a device file name. Processes can access data in a
section by opening the appropriate device file name and then reading and writing
the “file,” treating it as a sequence of disk blocks. Chapter 10 gives details on this
interface. A section of a disk may contain a logical file system, consisting of a boot
block, super block, inode list, and data blocks, as described in Chapter 2. The
mount system call connects the file system in a specified section of a disk to the
existing file system hierarchy, and the umount system call disconnects a file system
from the hierarchy. The mount system call thus allows users to access data in a
disk section as a file system instead of a sequence of disk blocks.
The syntax for the mount system call is

mount (special pathname, directory pathname, options);

where special pathname is the name of the device special file of the disk section
containing the file system to be mounted, directory pathname is the directory in the
existing hierarchy where the file system will be mounted (called the mount point),
and options indicate whether the file system should be mounted “read-only”
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Figure 5.22. File System Tree Before and After Mount

(system calls such as write and creat that write the file system will fail). For
example, if a process issues the system call

mount (““/dev/dsk1”, “/usr”, 0):

the kernel attaches the file system contained in the portion of the disk called
“/dev/dsk1” to directory “/usr” in the existing file system tree (see Figure 5.22).
The file *“/dev/dsk1” is a block special file, meaning that it is the name of a block
device, typically a portion of a disk. The kernel assumes that the indicated portion
of the disk contains a file system with a super block, inode list, and root inode.
After completion of the mount system call, the root of the mounted file system is
accessed by the name “/usr”. Processes can access files on the mounted file system
and ignore the fact that it is detachable. Only the link system call checks the file
system of a file, because System V does not allow file links to span multiple file
systems (see Section 5.15).

The kernel has a mount table with entries for every mounted file system. Each
mount table entry contains

® a device number that identifies the mounted file system (this is the logical file
system number mentioned previously);
® a pointer to a buffer containing the file system super block;
® a pointer to the root inode of the mounted file system (“/” of the “/dev/dsk1”
file system in Figure 5.22);
® a pointer to the inode of the directory that is the mount point (“usr” of the root
- file system in Figure 5.22).
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Association of the mount point inode and the root inode of the mouhted file system,
set up during the mount system call, allows the kernel to traverse the file system
hierarchy gracefully, without special user knowledge.

algorithm mount
inputs: file name of block special file
directory name of mount point
_ options (read only)
output: none
{
if (not super user)
return(error);
get inode for block special file (algorithm namei);
make legality checks;
get inode for “mounted on” directory name (algorithm namei);
if (not directory, or reference count > 1)
{
release inodes (algorithm iput);
| " return(error);
find empty slot in mount table;
invoke block device driver open routine;
get free buffer from buffer cache;
read super block into free buffer;
initialize super block fields;
get root inode of mounted device (algorithm iget), save in mount table;
mark inode of “mounted on” directory as mount point;
release special file inode (algorithm iput);
unlock inode of mount point directory;

Figure 5.23. Algorithm for Mounting a File System

Figure 5.23 depicts the algorithm for mounting a file system. The kernel only
allows processes owned by a superuser to mount or umount file systems. Yielding
permission for mount and umount to the entire user community would allow
malicious (or not so malicious) users to wreak havoc on the file system. Super-
users should wreak havoc only by accident.

The kernel finds the inode of the special file that represents the file system to be
mounted, extracts the major and minor numbers that identify the appropriate disk
section, and finds the inode of the directory on which the file system will be
mounted. The reference count of the directory inode must not be greater than 1 (it
must be at least 1 — why?), because of potentially dangerous side effects (see
exercise 5.27). The kernel then allocates a free slot in the mount table, marks the
slot in use, and assigns the device number field in the mount table. The above
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assignments are done immediately because the calling process could go to sleep in
the ensuing device open procedure or in reading the file system super block, and
another process could attempt to mount a file system. By having marked the
mount table entry in use, the kernel prevents two mounts from using the same
entry. By noting the device number of the attempted mount, the kernel can
prevent other processes from mounting the same file system again, because strange
things could happen if a double mount were allowed (see exercise 5.26).

The kernel calls the open procedure for the block device containing the file
system in the same way it invokes the procedure when opening the block device
directly (Chapter 10). The device open procedure typically checks that the device
is legal, sometimes initializing driver data structures and sending initialization
commands to the hardware. The kernel then allocates a free buffer from the buffer
pool (a variation of algorithm getblk) to hold the super block of the mounted file
system and reads the super block using a variation of algorithm read. The kernel
stores a pointer to the inode of the mounted-on directory of the original file tree to
allow file path names containing “..” to traverse the mount point, as will be seen.
It finds the root inode of the mounted file system and stores a pointer to the inode
in the mount table. To the user, the mounted-on directory and the root of the
mounted file system are logically equivalent, and the kernel establishes their
equivalence by their coexistence in the mount table entry. Processes can no longer
access the inode of the mounted-on directory.

The kernel initializes fields in the file system super block, clearing the lock fields
for the free block list and free inode list and setting the number of free inodes in
the super block to 0. The purpose of the initializations is to minimize the danger of
file system corruption when mounting the file system after a system crash: Making
the kernel think that there are no free inodes in the super block forces algorithm
ialloc to search the disk for free inodes. Unfortunately, if the linked list of free
disk blocks is corrupt, the kernel does not fix the list internally (see Section 5.17 for
file system maintenance). If the user mounts the file system read-only to disallow
all write operations to the file system, the kernel sets a flag in the super block.
Finally, the kernel marks the mounted-on inode as a mount point, so other
processes can later identify it. Figure 5.24 depicts the various data structures at
the conclusion of the mount call.

5.14.1 Crossing Mount Points in File Path Names

Let us reconsider algorithms namei and iget for the cases where a path name
crosses a mount point. The two cases for crossing a mount point are: crossing
from the mounted-on file system to ‘the mounted file system (in the direction from
the global system root towards a leaf node) and crossing from the mounted file
system to the mounted-on file system. The following sequence of shell commands
illustrates the two cases.
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Figure 5.24. Data Structures after Mount

mount /dev/dskl /usr
cd /usr/src/uts
cd ...

The mount command invokes the mount system call after doing some consistency
checks and mounts the file system in the disk section identified by “/dev/dsk1” onto
the directory “/usr”. The first cd (change directory) command causes the shell to
execute the chdir system call, and the kernel parses the path name, crossing the
mount point at “/usr”. The second c¢d command results in the kernel parsing the
path name and crossing the mount point at the third “..” in the path name.

For the case of crossing the mount point from the mounted-on file system to the
mounted file system, consider the revised algorithm for iget in Figure 5.25, which is
identical to that of Figure 4.3, except that it checks if the inode is a mount point:
If the inode is marked “mounted-on,” the kernel knows that it is a mount point. It
finds the mount table entry whose mounted-on inode is the one just accessed and
notes the device number of the mounted file system. Using the device number and
the inode number for root, which is common to all file systems, it then accesses the
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algorithm iget
input: file system inode number
output: locked inode

while (not done)

{

if (inode in inode cache)
if (inode locked)

sleep (event inode becomes unlocked);
continue; /* loop */
}
/* special processing for mount points———4/
if (inode a mount point)

{
find mount table entry for mount point;
get new file system number from mount table;
use root inode number in search;
continue; /* loop again */
}

if (inode on inode free list)

remove from free list;
increment inode reference count;
return (inode);

}

/* inode not in inode cache */

remove new inode from free list;

reset inode number and file system;

remove inode from old hash queue, place on new one;
read inode from disk (algorithm bread);

initialize inode (e.g. reference count to 1);

return inode;

Figure 5.25. Revised Algorithm for Accessing an Inode

root inode of the mounted device and returns that inode. In the first change
directory example above, the kernel first accesses the inode for “/usr” in the
mounted-on file system, finds that the inode is marked “mounted-on,” finds the root
inode of the mounted file system in the mount table, and accesses the root inode of
the mounted file system.
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algorithm namei /* convert path name to inode */
input: path name
output: locked inode
{
if (path name starts from root)
working inode = root inode (algorithm iget);
else
working inode = current directory inode (algorithm iget);
while (there is more path name)
{
read next path name component from input;
verify that inode is of directory, permissions;
if (inode is of changed root and component is "..")
continue; /* loop */
component search:
read inode (direcfory) (algorithms bmap, bread, brelse);
i{f (component matches a directory entry)
get inode number for matched component;
if (found inode of root and working inode is root and
and component name is "..")
{

/* crossing mount point */
get mount table entry for working inode;
release working inode (algorithm iput);
working inode = mounted on inode;
lock mounted on inode;
increment reference count of working inode;
go to component search (for ".."};
}
release working inode (algorithm iput);
working inode = inode for new inode number (algorithm iget);
}
else /* component not in directory */
return (no inode);

}

return (working inode);

Figure 5.26. Revised Algorithm for Parsing a File Name

For the second case of crossing the mount point from the mounted file system to
the mounted-on file system, consider the revised algorithm for namei in Figure 5.26.
It is similar to that of Figure 4.11. However, after finding the inode number for a
path name component in a directory, the kernel checks if the inode number is the
root inode of a file system. If it is, and if the inode of the current working inode is
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also root, and the path name component is dot-dot (“..””), the kernel identifies the
inode as a mount point. It finds the mount table entry whose device number equals
the device number of the last found inode, gets the inode of the mounted-on
directory, and continues its search for dot-dot (“..”) using the mounted-on inode as
the working inode. At the root of the file system, however, “..” is the root.

In the example above (cd “../../..”"), assume the starting current directory of the
process is *“/usr/src/uts”. When parsing the path name in namei, the starting
working inode is the current directory. The kernel changes the working inode to
that of “/usr/src” as a result of parsing the first “.” in the path name. Then, it
parses the second “.” in the path name, finds the root inode of the (previously)

‘mounted file system, “usr”, and makes it the working inode in namei. Finally, it

parses the third “.” in the path name: It finds that the inode number for “..” is
the root inode number, its working inode is the root inode, and “..” is the current
path name component. The kernel finds the mount table entry for the “usr” mount
point, releases the current working inode (the root of the “usr” file system), and
allocates the mounted-on inode (the inode for directory “usr” in the root file
system) as the new working inode. It then searches the directory structures in the
mounted-on “/usr” for “.” and finds the inode number for the root of the file
system (“/). The chdir system call then completes as usual; the calling process is
oblivious to the fact that it crossed a mount point.

5.14.2 Unmounting a File System
The syntax for the umount system call is
umount(special filename);

where special filename indicates the file system to be unmounted. When
unmounting a file system (Figure 5.27), the kernel accesses the inode of the device
to be unmounted, retrieves the device number for the special file, releases the inode
(algorithm iput), and finds the mount table entry whose device number equals that
of the special file. Before the kernel actually unmounts a file system, it makes sure
that no files on that file system are still in use by searching the inode table for all
files whose device number equals that of the file system being unmounted. Active
files have a positive reference count and include files that are the current directory
of some process, files with shared text that are currently being executed (Chapter
7), and open files that have not been closed. If any files from the file system are
active, the umount call fails: if it were to succeed, the active files would be
inaccessible.

The buffer pool may still contain “delayed write” blocks that were not written
to disk, so the kernel flushes them from the buffer pool. The kernel removes shared

. text entries that are in the region table but not operational (see Chapter 7 for

detail), writes out all recently modified super blocks to disk, and updates the disk
copy of all inodes that need updating. It would suffice for the kernel to update the
disk blocks, super block, and inodes for the unmounting file system only, but for
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algorithm umount

input:

special file name of file systen. to be unmounted

output: none

{

if (not super user)
return(error);
get inode of special file (algorithm namei);
extract major, minor number of device being unmounted;
get mount table entry, based on major, minor number,
for unmounting file system;
release inode of special file (algorithm iput);
remove shared text entries from region table for files
belonging to file system; /* chap 7xxx */
update super block, inodes, flush buffers;
if (files from file system still in use)
return(error);
get root inode of mounted file system from mount table;
lock inode;
release inode (algorithm iput); /* iget was in mount */
invoke close routine for special device;
invalidate buffers in pool from unmounted file system;
get inode of mount point from mount table;
lock inode;
clear flag marking it as mount point;
release inode (algorithm iput); /* iget in mount */
free buffer used for super block;
free mount table slot;

Figure 5.27. Algorithm for Unmounting a File System
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historical reasons it does so for all file systems. The kernel then releases the root
inode of the mounted file system, held since its original access during the mount
system call, and invokes the driver of the device that contains the file system to
close the device. Afterwards, it goes through the buffers in the buffer cache and
invalidates buffers for blocks on the now unmounted file system; there is no need to
cache data in those blocks any longer. When invalidating the buffers, it moves the
buffers to the beginning of the buffer free list, so that valid blocks remain in the
buffer cache longer. It clears the “mounted-on™ flag in the mounted-on inode set
during the mount call and releases the inode. After marking the mount table entry
-free for general use, the umount call completes.
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Figure 5.28. Linked Files in File System Tree

5.15 LINK

The link system call links a file to a new name in the file system directory
structure, creating a new directory entry for an existing inode. The syntax for the
link system call is

link (source file name, target file name);

where source file name is the name of an existing file and target file name is the
new (additional) name the file will have after completion of the link call. The file
system contains a path name for each link the file has, and processes can access the
file by any of the path names. The kernel does not know which name was the
original file name, so no file name is treated specially. For example, after executing
the system calls

link (““/usr/src/uts/sys”, “/ust/include/sys™);
link (“/ust/include/realfile.h”, “/usr/src/uts/sys/testfile.h”);

the following three path names refer to the same file: “/usr/src/uts/sys/testfile.h”,
“/usr/include/sys/testfile.h”, and “/usr/include/realfile” (see Figure 5.28).

The kernel allows only a superuser to link directories, simplifying the coding of
programs that traverse the file system tree. If arbitrary users could /ink directories,
programs designed to traverse the file hierarchy would have to worry about getting
into an infinite loop if a user were to link a directory to a node name below it in
the hierarchy. Superusers are presumably more careful about making such links.
The capability to link directories had to be supported on early versions of the
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system, because the implementation of the mkdir command, which creates a new
directory, relies on the capability to link directories. Inclusion of the mkdir system
call eliminates the need to link directories.

algorithm link
input: existing file name
new file name
output: none
{
get inode for existing file name (algorithm namei);
if (too many links on file or linking directory without super user permission)
{
release inode (algorithm iput);
return(error);
}
increment link count on inode;
update disk copy of inode;
unlock inode;
get parent inode for directory to contain new file name (algorithm namei);
if (new file name already exists or existing file, new file on
different file systems)
{

undo update done above;
return(error);
)
create new directory entry in parent directory of new file name:
include new file name, inode number of existing file name;
release parent directory inode (algorithm iput);
release inode of existing file (algorithm iput);

Figure 5.29. Algorithm for Linking Files

Figure 5.29 shows the algorithm for link. The kernel first locates the inode for
the source file using algorithm namei, increments its link count, updates the disk
copy of the inode (for consistency, as will be seen), and unlocks the inode. It then
searches for the target file; if the file is present, the link call fails, and the kernel
decrements the link count incremented earlier. Otherwise, it notes the location of
an empty slot in the parent directory of the target file, writes the target file name
and the source file inode number into that slot, and releases the inode of the target
file parent directory via algorithm iput. Since the target file did not originally
exist, there is no other inode to release. The kernel concludes by releasing the
source file inode: Its link count is 1 greater than it was at the beginning of the call,
and another name in the file system allows access to it. The link count keeps count
of the directory entries that refer to the file and is thus distinct from the inode
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reference count. If no other processes access the file at the conclusion of the link
call, the inode reference count of the file is 0, and the link count of the file is at
least 2.

For example, when executing

link (“source”, “dir/target™);

the kernel locates the inode for file “source”, increments its link count, remembers
its inode number, say 74, and unlocks the inode. It locates the inode of “dir”, the
parent directory of “target”, finds an empty directory slot in “dir”, and writes the
file name “target” and the inode number 74 into the empty directory slot. Finally,
it releases the inode for “source” via algorithm iput. If the link count of “source”
had been 1, it is now 2.

Two deadlock possibilities are worthy of note, both concerning the reason the
process unlocks the source file inode after incrementing its link count. If the kernel
did not unlock the inode, two processes could deadlock by executing the following
system calls simultaneously.

process A: link(“a/b/c/d”, * </f/g”);
process B: link(“e/f, “a/b/c/d/ee”);

Suppose process A finds the inode for file “a/b/c/d” at the same time that process
B finds the inode for “e/f”. The phrase at the same time means that the system
arrives at a state where each process has allocated its inode. Figure 5.30 illustrates
an execution scenario. When process A now attempts to find the inode for
directory “e/f”, it would sleep awaiting the event that the inode for “f” becomes
free. But when process B attempts to find the inode for directory “a/b/c/d”, it
would sleep awaiting the event that the inode for *“d” becomes free. Process A
would be holding a locked inode that process B wants, and process B would be
holding a locked inode that process A wants. The kernel avoids this classic
example of deadlock by releasing the source file’s inode after incrementing its link
count. Since the first resource (inode) is free when accessing the next resource, no
deadlock can occur.

The last example showed how two processes could deadlock each other if the
inode lock were not released. A single process could also deadlock itself. If it
executed

link (*a/b/c”, “a/b/c/d”);

it would allocate the inode for file “c™ in the first part of the algorithm; if the
kernel did not release the inode lock, it would deadlock when encountering the
inode “c” in searching for the file “d”. If two processes, or even one process, could
not continue executing because of deadlock, what would be the effect on the
system? Since inodes are finitely allocatable resources, receipt of a signal cannot
awaken the process from its sleep (Chapter 7). Hence, the system could not break
the deadlock without rebooting. If no other processes accessed the files over which
the processes deadlock, no other processes in thie system would be affected.
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However, any processes that accé$sed those files (or attempted to access other files
via the locked directory) would deadlock. Thus, if the file were *“/bin” or
“/usr/bin” (typical depositories for commands) or “/bin/sh” (the shell) the effect
on the system would be disastrous.

5.16 UNLINK

The unlink system call removes a directory entry for a file. The syntax for the
unlink call is

unlink (pathname);

where pathname identifies the name of the file to be unlinked from the directory
hierarchy. If a process unlinks a given file, no file is accessible by that name until
another directory entry with that name is created. In the following code fragment,
for example, o

unlink (“myfile™);
fd = open(“myfile”, O_RDONLY);

the open call should fail, because the current directory no longer contains a file
called myfile. If the file being unlinked is the last link of the file, the kernel
eventually frees its data blocks. However, if the file had several links, it is still
accessible by its other names.

Figure 5.31 gives the algorithm for unlinking a file. The kernel first uses a
variation of algorithm namei to find the file that it must unlink, but instead of
returning its inode, it returns the’inode of the parent directory. It accesses the in-
core inode of the file to be unlinked, using algorithm iget. (The special case for
unlinking the file “.” is covered in an exercise.) After checking error conditions
and, for executable files, removing inactive shared 'text entries from the region table
(Chapter 7), the kernel clears the file name from the parent directory: - Writing a 0
for the value of the inode number suffices to clear the slot in the directory. The
kernel then does a synchronous write of the directory to disk to ensure that the file
is inaccessible by its old name, decrements the link count, and releases the in-core
inodes of the parent directory and the unlinked file via algorithm iput.

When releasing the in-core inode of the unlinked file in iput, if the reference
count drops to 0, and if the link count is 0, \the kernel reclaims the disk blocks
occupied by the file. No file names refer to the inode any longer and the inode is
not active. To reclaim the disk blocks, the k\:rnel loops through the inode table of
contents, freeing all direct blocks immediately (according to algorithm free). For
the indirect blocks, it recursively frees all blocks that appear in the various levels of
indirection, freeing the more direct blocks first. It zeroes out the block numbers in
the inode table of contents and sets the file size in the inode to 0. It then clears the
inode file type field to indicate that the inode is free and frees the inode with
algorithm ifree. It updates the disk since the disk copy of the inode still indicated
that. the inode was in use; the inode is now free for assignment to other files.
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algorithm unlink
input: file name
output: none
{ .
get parent inode of file to be unlinked (algorithm namei);
/* if unlinking the current directory... */
if (last component of file name is ".")
increment inode reference count;
else
get inode of file to be unlinked (algorithm iget);
if (file is directory but user is not super user)
{
release inodes (algorithm iput);
return(error);
}
if (shared text file and link count currently 1)
remove from region table;
write parent directory: zero inode number of unlinked file;
release inode parent directory (algorithm iput);
decrement file link count;
release file inode (algorithm iput);
/* iput checks if link count is 0: if so,
* releases file blocks (algorithm free) and
* frees inode (algorithm ifree);
*/

Figure 5.31. Algorithm for Unlinking a File

5.16.1 File System Consistency

The kernel orders its writes to disk’ to minimize file system corruption in event of
system failure. For instance, when it removes a file name from its parent directory,
it writes the directory synchronously to the disk — before it destroys the contents of
the file and frees the inpde. If the system were to crash before the file contents
were removed, damage to the file system would be minimal: There would be an
inode that would have a link count 1 greater than the number of directory entries
that access it, but all other paths to the file would still be legal. If the directory
write were not synchronous, it would be possible for the directory entry on disk to
point to a free (or reallocated!) inode after a system crash. Thus there would be
more directory entries in the file system that refer to the inode than the inode
would: have link counts. In particular, if the file name was that of the last link to
the file, it would refer to an unallocated inode. System damage is clearly less
severe and easier to correct in the first case (see Section 5.18).
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For example, suppose a file has two links with path names “a” and “b”, and
suppose a process unlinks “a”. If the kernel orders the disk write operations, then
it zeros the directory entry for “a” and writes it to disk. If the system crashes after
the write to disk completes, file “b” has link count of 2, but file “a” does not exist
because its old entry had been zeroed before the system crash. Flle “b” has an
extra link count, but the system functions properly when rebooted.

Now suppose the kernel ordered the disk write operations in the reverse order
and the system crashes: That is, it decrements the link count for the file “b” to 1,
writes the inode to disk, and crashes before it could zero the directory entry for file
“a”. When the system is rebooted, entries for files “a” and “b” exist in their
respective directories, but the link count for the file they referencc is 1. If a process
then unlinks file “a”, the file link count drops to O even though file “b” still
references the inode. If the kernel were later to reassign the inode as the result of
a creat system call, the new file would have link count 1 but two path names that
reference it. The system cannot rectify the situation except via maintenance
programs (fsck, described in Section 5.18) that access the file system through the
block or raw interface.

The kernel also frees inodes and disk blocks in a specific order to minimize
corruption in event of system failure. When removing the contents of a file and
cléarmg its inode, it is possible to free the blocks containing the file data first, or it
is possible to free and write out the inode first. The result is usually identical for
both cases, but it differs if the system crashes in the middle. Suppose the kernel
first frees the disk blocks of a file and crashes. When the system is rebooted, the
inode still contains references to the old disk blocks, which may no ionger contain
data relevant to the file. The kernel would see an apparently good file, but a user
accessing the file would notice corruption. It is also possible that other files were
assigned those disk blocks. The effort to clean the file system with the fsck
program would be great. How... if the system first writes the inode to disk and
the system crashes, a user would not notice anything wrong with the file system
when the system is rebooted. The data blocks that previously belonged to the file
would be inaccessible to the system, but users would notice no apparent corruption.
The fsck program also finds the task of reclaiming unlinked disk blocks easier than
the clean-up it would have to d{ for the first sequence of events.

5.16.2 Race Conditions

Race conditions abound in the unlmk system call, particularly when unlinking
directories. The rmdir command removes a directory after verifying that the
directory contains no files (it reads the directory and checks that all directory
entries have inode value 0). ‘But since rmdir runs at user level, the actions of
verifying that a directory is empty and removing the directory are not atomic; the
“system could do a context switch between execution of the read and unlink system
calls. Hence, another process could creat a file in the dlrectory after rmdir
determined that the directory was empty. Users can prevent this situation only by
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use of file and record locking. Once a process begins execution of the unlink call,
however, no other process can access the file being unlinked since the inodes of the
parent directory and the file are locked. .

Recall the algorithm for the link system call and how the kernel unlocks the
inode before completion of the call. If another process should unlink the file while
the inode lock is free, it would only decrement the link count; since the link count
had been incremented before unlinking the inode, the count would still be greater
than 0. Hence, the file cannot be removed, and the system is safe. The condition is
equivalent to the case where the unlink happens immediately after the link call
completes.

Another race condition exists in the case where one process is converting a file
path name to an inode using algorithm namei and another process is removing a
directory in that path. Suppose process A is parsing the path name “a/b/c/d” and
goes to sleep while allocating the in-core inode for “c”. It could go to sleep while
trying to lock the inode or while trying to access the disk block in which the inode
resides (see algorithms iget and bread). If process B wants to unlink the directory
“c”, it may go to sleep, possibly for the same reasons that process A is sleeping.
Suppose the kernel later schedules process B to run before process A. Process B
would run to completion, unlinking directory “c” and removing it and its contents
(for the last link) before process A runs again. Later, process A would try to
access an illegal in-core inode that had been removed. Algorithm namei therefore
checks that the link count is not 0 before proceeding, reporting an error otherwise.

The check is not sufficient, however, because another process could conceivably
create a new directory somewhere in the file system and allocate the inode that had
previously been used for “c”. Process A is tricked into thinking that it accessed the
correct inode (see Figure 5.32). Nevertheless, the system maintains its integrity;
the worst that could happen is that the wrong file is accessed — a possible security
breach — but the race condition is rare in practice.

A process can unlink a file while another process has the file open. (The
unlinking process could even be the process that did the open). Since the kernel
unlocks the inode at the end of the open call, the unlink call will succeed. The
kernel will follow the unlink algorithm as if the file were not open, and it will
remove the directory entry for the file. No other processes will be able to access
the now unlinked file. However, since the open system call had incremented the
inode reference count, the kernel does not clear the file contents when executing the
iput algorithm at the conclusion of the unlink call. So the opening process can do
all the normal file operations with its file descriptor, including reading and writing
the file. But when it closes the file, the inode reference count drops to O in iput,
and the kernel clears the contents of the file. In short, the process that had opened
the file proceeds as if the unlink did not occur, and the unlink happens as if the file
were not open. Other system calls will continue to work for the opening process,
too.

In Figure 5.33 for example, a process opens a file supplied as a parameter and
then unlinks the file it just opened. The stat call fails because the original path
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Proc A Proc B Proc C

Unlink file ¢
Find inode for ¢ locked
Sleeps

Search dir b for name ¢
Get inode number for ¢
Finds inode for ¢ locked

Sleeps

Wakes up and c free
Unlinks c,
old inode free if
link count 0

Assign inode to new file n
Happen to assign
old inode for ¢

Eventually release
inode n lock

Wakes up and old c inode free
(now n)
Get inode for n
Search n for name d

Time

Figure 5.32. Unlink Race Condition
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#include <sys/types.h>
#include <sys/stat.h>
#include <fentlh>

main(argc, argv)
int arggc;
char *argvll];

int fd;
char bufl{1024};
struct stat statbuf;

if (argc !=2) /* need a parameter */
exit(); h
fd = open(argvi1], O_RDONLY);
if (fd == —1) /* open fails */
exit();
if (unlink(argvl[1]) == —1) /* unlink file just opened */
exit(;

if (stat(argv[1], &statbuf) == —1) /* stat the file by name*/
printf(“stat %s fails as it should\n”, argvi1]);

else
printf(*‘stat %s succeeded!!!""\n”, argv{1]);

if (fstat(fd, &statbuf) == —1) /* stat the file by fd */
printf(“fstat %s fails!\n”, argv1});

else
printf(“fstat %s succeeds as it should\n”, argv[1]);

while (read(fd, buf, sizeof(buf)) > 0)  /* read open/unlinked file */
printf(“%1024s”, buf); /* prints 1K byte field */

Figure 5.33. Unlinking an Opened File

name no longer refers to a file after the unlink (assuming no other process created
" a file by that name in the meantime), but the fstat call succeeds because it gets to
the inode via the file descriptor. The process loops, reading the file 1024 bytes at a
time and printing the file to the standard output. When the read encounters the
end of the file, the process exits: After the close in exit, the file no longer exists.
Processes commonly create temporary files and immediately unlink them; they can
continue to read and write them, but the file name no longer appears in the
directory hierarchy. If the process should fail for some reason, it leaves no trail of
temporary files behind it. -
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- 5.17 FILE SYSTEM ABSTRACTIONS

Weinberger introduced file system types to support his network file system (see
[Killian 84] for a brief description of this mechanism), and the latest release of
System V supports a derivation of his scheme. File system types allow the kernel to
support multiple file systems simultaneously, such as network file systems (Chapter
13) or even file systems of other operating systems. Processes use the usual UNIX
system calls to access files, and the kernel maps a generic set of file operations into
operations specific to each file system type.

File System Generic System V

Operations Inodes File System Inode
System V open
close
read
write a2

Remote ropen
rclose
rread Remote
rwrjtc Inode

Figure 5.34. Inodes for File System Types

The inode is the interface between the abstract file system and the specific file
system. A generic in-core inode contains data that is independent of particular file
systems, and points to a file-system-specific inode that contains file-system-specific
data. The file-system-specific inode contains information such as access permissions
and block layout, but the generic inode contains the device number, inode number,
file type, size, owner, and reference count. Other data that is file-system-specific
includes the super block and directory structures. Figure 5.34 depicts the generic
in-core inode table and two tables of file-system-specific inodes, one for System V
file system structures and the other for a remote (network) inode. The latter inode
presumably contains enough information to identify a file on a remote system. A
file system may not have an inode-like structure; but the file-system-specific code
manufactures :an object that satisfies UNIX file system semantics and allocates its
“inode” when the kernel allocates a generic inode.
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Each file system type has a structure that contains the addresses of functions
that perform abstract operations. When the kernel wants to access a file, it makes
an indirect function call, based on the file system type and the operation (see
Figure 5.34). Some abstract operations are to open a file, close it, read or write
data, return an inode for a file name component (like namei and iget), release an
inode (like ipur), update an inode, check access permissions, set file attributes
(permissions), and mount and unmount file systems. Chapter 13 will illustrate the
use of file system abstractions in the description of a distributed file system.

5.18 FILE SYSTEM MAINTENANCE

The kernel maintains consistency of the file system during normal operation.
However, extraordinary circumstances such-as a power failure may cause a system
crash that leaves a file system in an inconsistent state: most of the data in the file
system is acceptable for use, but some inconsistencies exist. The command fsck
checks for such inconsistencies and repairs the file system if necessary. It accesses
the file system by its block or raw interface (Chapter 10) and bypasses the regular
file access methods. This section describes several inconsistencies checked by fsck.

A disk block may belong to more than one inode or to the list of free blocks and
an inode. When a file system is originally set up, all disk blocks are on the free list.
When a disk block is assigned for use, the kernel removes it from the free list and
assigns it to an inode. The kernel may not reassign the disk block to another inode
until the disk block has been returned to the free list. Therefore, a disk block is
cither on the free list or assigned to a single inode. Consider the possibilitics if the
kernel freed a disk block in a file, returning the block number to the in-core copy of
the super block, and allocated the disk block to a new file. If the kernel wrote the
inode and blocks of the new file to disk but crashed before updating the inode of
the old file to disk, the two inodes would address the same disk block number.
Similarly, if the kernel wrote the super block and its free list to disk and crashed
before writing the old inode out, the disk block would appear on the free list and in
the old inode.

If a block number is not on the free list of blocks nor contained in a file, the file
system is inconsistent because, as mentioned above, all blocks must appear
somewhere. This situation could happen if a block was removed from a file and
placed on the super block free list. If the old file was written to disk and the
system crashed before the super block was written to disk, the block would not
appear on any lists stored on disk.

An inode may have a non-0 link count, but its inode number may not exist in
any directories in the file system. All files except (unnamed) pipes must exist in
the file system tree. If the system crashes after creating a pipe or after creating a
file but before creating its directory entry, the inode will have its link field set even
though it does not appear to be in the file system. The problem could also arise if a
directory were unlinked before making sure that all files contained in the directory
were unlinked.
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If the format of an inode is incorrect (for instance, if the file type field has an
undefined value), something is wrong. This could happen if an administrator
mounted an impropérly formatted file system. The kernel accesses disk blocks that
it thinks contain inodes but in reality contain data.

If an inode number appears in a directory entry but the inode is free, the file
system is inconsistent because an inode number that appears in a directory entry
should be that of an allocated inode. This could happen if the kernel was creating
a new file and wrote the directory entry to disk but did not write the inode to disk
before the crash. It could also occur if a process unlinked a file and wrote the
freed inode to disk, but did not write the directory element to disk before it
crashed. These situations are avoided by ordering the write operations properly.

If the number of free blocks or free inodes recorded in the super block does not
conform to the number that exist on disk, the file system is inconsistent. The
summary information in the super block must always be consistent with the state of
the file system.

5.19 SUMMARY

This chapter concludes the first part of the book, the explanation of the file system.
It introduced three kernel tables: the user file descriptor table, the system file
table, and the mount table. It described the algorithms for many system calls
relating to the file system and their interaction. It introduced file system
abstractions, which allow the UNIX system to support varied file system types.
Finally, it described how fsck checks the consistency of the file system.

5.20 EXERCISES

1. Consider the program in Figure 5.35. What is the return value for all the reads and
what is the contents of the buffer? Describe what is happening in the kernel during
each read.

2. Reconsider the program in Figure 5.35 but suppose the statement

Iseek (fd, 9000L, 0);

is placed before the first read. What does the process see and what happens inside the
kernel?

3. A process can open a file in write-append mode, meaning that every write operations
starts at the byte offset marking the current end of file. Therefore, two processes can
open a file in write-append mode and write the file without overwriting data. What
happens if a process opens a file in write-append mode and seeks to the beginning of
the file?

4. The standard I/0 library makes user reading and writing more efficient by buffering
the data in the library and thus potentially saving the number of system calls a user
has to make. How would you implement the library functions fread and fwrite?
What should the library functions fopen and felose do?
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#tinclude <fentl.h>
main(

{

int fd;

char bufl1024};

fd = creat(*junk”, 0666);
Iseek (fd, 2000L, 2);
write(fd, “hello”, 5);
close(fd);

/* seek to byte 2000 */

fd = open(“junk”, O_RDONLY);

read(fd, buf, 1024); /* read zero's */
read(fd, buf, 1024); /* catch something */
read(fd, buf, 1024);

Figure 5.35. Reading Os and End of File

141

5. If a process is reading data consecutively from a file, the kernel notes the value of the

*17.

#include <fentlh>
main(
{
int fd;
char bufl256];

fd = open(“/etc/passwd”, O_RDONLY);
if (read(fd, buf, 1024) < 0) -
printf(“read fails\n™);

Figure 5.36. A Big Read in a Little Buffer

e Structures similar to the super block keep track of free fragments;
o The kernel does not keep a preallocated pool of free fragments but breaks a free
block into fragments when necessary;

read-ahead block in the in-core inode. What happens if several processes
simultaneously read data consecutively from the same file?

Consider the program in Figure 5.36. What happens when the program is executed?
Why? What would happen if the declaration of buf were sandwiched between the
declaration of two other arrays of size 1024? How does the kernel recognize that the
read is too big for the buffer?
The BSD file system allows fragmentation of the last block of a file as needed,
according to the following rules:
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o The kernel can assign block fragments only for the last block of a file;
o If a block is partitioned into several fragments, the kernel can assign them to
different files;

e The number of fragments in a block is fixed per file system;

o The kernel allocates fragments during the write system call.
Design an algorithm that allocates block fragments to a file. What changes must be
made to the inode to allow for fragments? How advantageous is it from a
performance standpoint to use fragments for files that use indirect blocks? Would it
be more advantageous to allocate fragments during a close call instead of during a
write call?

Recall the discussion in Chapter 4 for placing data in a file’s inode. If the size of the
inode is that of a disk block, design an algorithm such that the last data of a file is
written in the inode block if it fits. Compare this method with that described in the
previous problem.
System V uses the fentl system call to implement file and record locking:

fentl(fd, cmd, arg);

where fd is the file descriptor, cmd specifies the type of locking operation, and arg
specifies various parameters, such as lock type (read or write) and byte offsets (see the
appendix). The locking operations include

o Test for locks belonging to other processes and return immediately, mdlcatmg

whether other locks were found,

o Set a lock and sleep until successful,

o Set a lock but return immediately if unsuccessful.
The kernel automatically releases locks set by a process when it closes the file.
Describe an algorithm that implements file and record locking. If the locks are
mandatory, other processes should be prevented from accessing the file. What
changes must be made to read and write?
If a process goes to sleep while waiting for a file lock to become free, the possibility for
deadlock exists: process A may lock file “one” and attempt to lock file “two,” and
process B may lock file “two” and attempt to lock file “one.” Both processes are in a
state where they cannot continue. Extend the algorithm of the previous problem so
that the kernel detects the deadlock situation as it is about to occur and fails the
system call. Is the kernel the right place to check for deadlocks?

Before the existence of a file locking system call, users could get cooperating processes
to implement a locking mechanism by executing system calls that exhibited atomic
features. What system calls described in this chapter could be used? What are the
dangers inherent in using such methods?

Ritchie claims (see {Ritchie 81]) that file locking is not sufficient to prevent the
confusion caused by programs such as editors that make a copy of a file while editing
and then write the original file when done. Explain what he meant and comment.
Consider another method for locking files to prevent destructive update: Suppose the
inode contains a new permission setting such that it allows only one process at a time
to open the file for writing, but many processes can open the file for reading. Describe
an implementation.

Consider the program in Figure 5.37 that creates a directory node in the wrong format
(there are no. directory entries for “.” and “.”). Try a few commands on the new
directory such as Is —/, Is —Id, or cd. What is happening?
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main(argc, argv)
int argc;
char *argvl];

if (argc != 2)

{
printf(“try: command directory name\n™);
exitQ;

}

/* modes indicate: directory (04) rwx permission for all */
/* only super user can do this */
if (mknod (argvl1], 040777,-0) == —1)

printf(“mknod fails\n");

Figure 5.37. A Half-Baked Directory

Write a program that prints the owner, file type, access permissions, and access times
of files supplied as parameters. If a file (parameter) is a directory, the program should
read the directory and print the above information for all files in the directory.
Suppose a directory has read permission for a user but: not execute permission. What
happens when the directory is used as a parameter to /s with the “—i” option? What
about the “—I” option? Explain the answers. Repeat the problem for the case that
the directory has execute permission but not read permission.
Compare the permissions a process must have for the following operations and
comment. )

o Creating a new file requires write permission in a directory.

e Creating an existing file requires write permission on the file.

e Unlinking a file requires write permission in the directory, not on the file.
Write a program that visits every directory, starting with the current directory. How
should it handle loops in the directory hierarchy?
Execute the program in Figure 5.38 and describe what happens in the kernel. (Hint:
Execute pwd when the program completes.)

Write a program that changes its root to a particular directory, and investigate the
directory tree accessible to that program.
Why can’t a process undo a previous chroot system call? Change the implementation
so that it can change its root back to a previous root. What are the advantages and
disadvantages of such a feature?
Consider the simple pipe example in Figure 5.19, where a process writes the string
“hello” in the pipe then reads the string. What would happen if the count of data
written to the pipe were 1024 instead of 6 (but the count of read data stays at 6)?
What would happen if the order of the read and write system calls were reversed?
In the program illustrating the use of named pipes (Figure 5.19), what happens if
mknod discovers that the named pipe already exists? How does the kernel implement
this? What would happen if many reader and writer processes all attempted to
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main(argc, argv)
int argc;
char *argvl];

if (argc !=2)

{
printf(“need 1 dir arg\n”);
exit(;

}

if (chdir(argv(1]) == ~1)
printf(“%s not a directory\n”, argv[1]);

Figure 5.38. Sample Program with Chdir System Call

communicate through the named pipe instead of the one reader and one writer implicit
in the text? How could the processes ensure that only one reader and one writer
process were communicating?

When opening a named pipe for reading, a process sleeps in the open until another
process opens the pipe for writing. Why? Couldn’t the process return successfully
from the open, continue processing until it tried to read from the pipe, and sleep in the
read?

How would you implement the dup2 (from Version 7) system call with syntax

dup2(oldfd, newfd);

where oldfd .s the file descriptor to be duped to file descriptor number newfd? What
should happen if newfd already refers to an open file?

What strange things could happen if the kernel would allow two processes to mount
the same file system simultaneously at two mount points?

Suppose a process changes its current directory to “/mnt/a/b/c” and a second process
then mounts a file system onto “/mnt”. Should the mount succeed? What happens if
the first process executes pwd? The kernel does not allow the mount to succeed if the
inode reference count of “/mnt” is greater than 1. Comment.

In the algorithm for crossing a mount point on recognition of “.” in the file path
name, the kernel checks three conditions to see if it is at a mount point: that the
found inode has the root inode number, that the working inode is root of the file
system, and that the path name component is “.”. Why must it check all three
conditions? Show that checking any two conditions is insufficient to allow the process
to cross the mount pcint.

If a user mounts a file system "read-only," the kernel sets a flag in the super block.
How should it prevent write operations during the write, creat, link, unlink, chown,
and chmod system calls? What write operations do all the above system calls do to
the file system?

Suppose a process attempts to wmount a file system and another process is
simultaneously attempting to creat a new file on that file system. Only one system call
can succeed. Explore the race condition.



5.20

* 31,

32

33.

* 34,

*3s.

36.

37.
38.

EXERCISES 145

When the umount system call checks that no more files are active on a file system, it
has a problem with the file system root inode, allocated via iget during the mount
system call and hence having reference count greater than 0. How can umount be
sure there are no active files and take account for the file system root? Consider two
cases:
o umount releases the root inode with the iput algorithm before checking for active
inodes. (How does it recover if there were active files after all?)
e umount checks for active files before releasing the root inode but permits the root
inode to remain active. (How active can the root inode get?)
When executing the command /s —Id on a directory, note that the number of links to
the directory is never 1. Why?
How does the command mkdir (make a new directory) work? (Hint: When mkdir
completes, what are the inode numbers for “.”" and “.r
Symbolic links refer to the capability to Jink files that exist on different file systems.
A new type indicator specifies a symbolic link file; the data of the file is the path name
of the file to which it is linked. Describe an implementation of symbolic links.
What happens when a process executes

unlink (*.”);

What is the current directory of the process? Assume superuser permissions.

Design a system call that truncates an existing file to arbitrary sizes, supplied as an
argument, and describe an implementation. Implement a system cali that allows a
user to remove a file segment between specified byte offsets, compressing the file size.
Without such systeri calls, encode a program that provides this functionality.

Describe all conditions where the reference count of an inode can be greater than 1.

In file system abstractions, should each file system type support a private lock
operation to be called from the generic code, or does a generic lock operation suffice?



THE STRUCTURE
OF PROCESSES

Chapter 2 formulated the high-level characteristics of processes. This chapter
presents the ideas more formally, defining the context of a process and showing how
the kernel identifies and locates a process. Section 6.1 defines the process state
model for the UNIX system and the set of state transitions. The kernel contains a

process table with an entry that describes the state of every active process in the

system. The u area contains additional information that controls the operation of a
process. The process table entry and the u area are part of the context of a
process. The aspect of the process context that most visibly distinguishes it from
the context of another: process is, of course, the contents of its address space.
Section 6.2 describes the principles of memory management for processes and for
the kernel and how the operating system and the hardware cooperate to do virtual
memory address translation. Section 6.3 examines the components of the context of
a process, and the rest of the chapter describes the low-level algorithms that
manipulate the process context. Section 6.4 shows how the kernel saves the context
of a process during an interrupt, system call, or context switch and how it later
resumes execution of the suspended process. Section 6.5 gives various algorithms,
used by the system calls described in the next chapter, that manipulate the process
address space. Finally, Section 6.6 covers the algorithms for putting a process to
sleep and for waking it up.

146
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6.1 PROCESS STATES AND TRANSITIONS

As outlined in Chapter 2, the lifetime of a process can be conceptually divided into
a set of states that describe the process. The following list contains the complete
set of process states.

1. The process is executing in user mode.

2. The process is executing in kernel mode.

3. The process is not executing but is ready to run as soon as the kernel
schedules it.

4. The process is sleeping and resides in main memory.

5. The process is ready to run, but the swapper (process 0) must swap the
process into main memory before the kernel can schedule it to execute.
Chapter 9 will reconsider this state in a paging system.

6. The process is sleeping, and the swapper has swapped the process to
secondary storage to make room for other processes in main memory.

7. The process is returning from the kernel to user mode, but the kernel
preempts it and does a context switch to schedule another process. The
distinction between this state and state 3 (“ready to run”) will be brought out
shortly.

8. The process is newly created and is in a transition state; the process exists,
but it is rot ready to run, nor is it sleeping. This state is the start state for
all processes except process 0.

9. The process executed the exit system call and is in the zombie state. The
process no longer exists, but it leaves a record containing an exit code and
some timing statistics for its parent process to collect. The zombie state is
the final state of a process.

v

Figure 6.1 gives the complete process state transition diagram. Consider a
typical process as it moves through the state transition model. The events depicted
are artificial in that processes do not always experience them, but they illustrate
various state transitions. The process enters the state model in the *“created” state
when the parent process executes the fork system call and eventually moves into a
state where it is ready to run (3 or 5). For simplicity, assume the process enters
the state “ready to run in memory.” The process scheduler will eventually pick the
process to execute, and the process enters the state “kernel running,” where it
completes its part of the fork system call.

When the process completes the system call, it may move to the state “user
running,” where it executes in user mode. After a period of time, the system clock
may interrupt the processor, and the process enters state “kernel running” again.
When the clock interrupt handler finishes servicing the clock interrupt, the kernel
may decide to schedule another process to execute, so the first process enters state
“preempted”” and the other process executes. The state “preempted” is really the
same as the state “ready to run in memory” (the dotted line in the figure that
connects the two states emphasizes their equivalence), but they are depicted
separately to stress that a process executing in kernel mode can be preempted only
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when it is about to return to user mode. Consequently, the kernel could swap a
process from the state “preempted” if necessary. Eventually, the scheduler will
choose the process to execute, and it returns to the state *“user running,” executing
in user mode again.

When a process executes a system call, it leaves the state “user running” and
enters the state “‘kernel running.” Suppose the system call requires I/0 from the
disk, and the process must wait for the I/0 to complete. It enters the state “asleep
in memory,” putting itself to sleep until it is notified that the 1/0 has completed.
When the 1/0 later completes, the hardware interrupts the CPU, and the interrupt
handler awakens the process, causing it to enter the state “ready to run in
memory.”

Suppose the system is executing many processes that do not fit simultaneously
into main memory, and the swapper (process 0) swaps out the process to make
room for another process that is in the state “ready to run swapped.” When
evicted from main memory, the process enters the state “ready to run swapped.”
Eventually, the swapper chooses the process as the most suitable to swap into main
memory, and the process reenters the state “ready to run in memory.” The
scheduler will eventually choose to run the process, and it enters the state “kernel
running” and proceeds. When a process completes, it invokes the exit system call,
thus-entering the states “kernel running” and, finally, the “zombie” state.

The process has control over some state transitions at user-level. First, a
process can create another process. However, the state transitions the process takes
from the “created” state (that is, to the states “ready to run in memory” or “ready

_to run swapped”) depend on the kernel: The process has no control over those state

transitions. Second, a process can make system calls to move from state “user
running” to state “kernel runhing” and enter the kernel of its own volition.
However, the process has no control over when it will return from the kernel; events
may dictate that it never returns but enters the zombie state (see Section 7.2 on
signals). Finally, a process can exit of its own volition, but as indicated before,
external events may dictate that it exits without explicitly invoking the exit system
call. All other state transitions follow a rigid model encoded in the kernel, reacting
to events in a predictable way according to rules formulated in this and later
chapters. Some rules have already been cited: No process can preempt another
process executing in the kernel, for example.

Two kernel data structures describe the state of a process: the process table
entry and the u area. The process table contains fields that must always be
accessible to the. kernel, but the u area contains fields that need to be accessible
only to the running process. Therefore, the kernel allocates space for the u area
only when creating a process: It does not need u areas for process table entries
that do not hdve processes.

The fields in the process table are the following.

e The state field identifies the process state. »
e The process table entry contains fields that allow the kérnel to locate the process
and its # area in main memory or in secondary stora@c. The kernel uses the
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information to do a context switch to the process when the process moves from
state “ready to run in memory” to the state “kernel running” or from the state
“preempted” to the state “user running.” In addition, it uses this information
when swapping (or paging) processes to and from main memory (between the
two “in memory” states and the two “swapped” states). The process table
entry also contains a field that gives the process size, so that the kernel knows
how much space to allocate for the process.

Several user identifiers (user IDs or UIDs) determine various process privileges.
For example, the user ID fields delineate the sets of processes that can send
signals to each other, as will be explained in the next chapter.

Process identifiers (process 1Ds or P1Ds) specify the relationship of processes to
each other. These ID fields are set up when the process enters the state
“created” in the fork system call.

The process table entry contains an event descriptor when the process is in the
“sleep” state. This chapter will examine its use in the algorithms for sleep and
wakeup.

Scheduling parameters allow the kernel to determine the order in which
processes move to the states “‘kernel running” and “user running.”

A signal field enumerates the signals sent to a process but not yet handled
(Section 7.2).

Various timers give process execution time and kernel resource utilization, used
for process accounting and for the calculation of process scheduling priority.
One field is a user-set timer used to send an alarm signal to a process (Section
8.3).

The u area contains the following fields that further characterize the process

states. Previous chapters have described the last seven fields, which are briefly
described again for completeness.

A pointer to the process table identifies the entry that corresponds to the u area.
The real and effective user IDs determine various privileges allowed the process,
such as file access rights (see Section 7.6).

Timer fields record the time the process (and its descendants) spent executing in
user mode and in kernel mode.

¢ An array indicates how the process wishes to react to signals.
e The control terminal field identifies the “login terminal” associated with the

process, if one exists.
An error field records errors encountered during a system call.

» A return value field contains the result of system calls.

1/0 parameters describe the amount of data to transfer, the address of the
source (or target) data array in user space, file offsets for 1/0, and so on.

The current directory and current root describe the file system environment of
the process.

The user file descriptor table records the files the process has open.



